洛谷 3911 最小公倍数之和

首先设 lim=Nmaxi=1ai,ck=Ni=1[ai=k]
于是问题转化为求解 limi=1limj=1lcm(i,j)cicj

limi=1limj=1lcm(i,j)cicj=limi=1limj=1ijcicjgcd(i,j)=limd=1didlimjdlim[gcd(i,j)=1]ijcidcjd

f(x)=idlimjdlim[gcd(i,j)=x]ijcidcjd,F(x)=x|df(d)=idlimjdlim[x|gcd(i,j)]ijcidcjd

F(x)=idlimjdlim[x|gcd(i,j)]ijcidcjd=x2xidlimxjdlimijcixdcjxd=x2(xidlimicixd)2

limd=1didlimjdlim[gcd(i,j)=1]ijcidcjd=limd=1df(1)=limd=1didlimi2μ(i)(ijdlimjcijd)2

于是可以预处理 (xdlimjcxd)2 然后这题就没了。

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <cstdio>
using namespace std;
const int N = 5e4;
int n,lim,c[N + 5];
int vis[N + 5],prime[N + 5],cnt,mu[N + 5];
long long f[N + 5];
long long ans;
int main()
{
mu[1] = 1;
for(register int i = 2;i <= N;++i)
{
if(!vis[i])
mu[prime[++cnt] = i] = -1;
for(register int j = 1;j <= cnt && i * prime[j] <= N;++j)
{
vis[i * prime[j]] = 1;
if(!(i % prime[j]))
break;
else
mu[i * prime[j]] = -mu[i];
}
}
scanf("%d",&n);
int x;
for(register int i = 1;i <= n;++i)
scanf("%d",&x),++c[x],lim = max(lim,x);
for(register int i = 1;i <= lim;f[i] *= f[i],++i)
for(register int j = 1;i * j <= lim;++j)
f[i] += (long long)j * c[i * j];
for(register int i = 1;i <= lim;++i)
for(register int j = 1;i * j <= lim;++j)
ans += (long long)i * j * j * mu[j] * f[i * j];
printf("%lld\n",ans);
}

Related Issues not found

Please contact @Alpha1022 to initialize the comment