现在发现新的多项式板子写分治 NTT 真麻烦……
显然 \(k\) 次价值的期望是 \[ \frac1{nm}\sum\limits_{i=1}^n\sum\limits_{j=1}^m(a_i+b_j)^k \]
先别管那个 \(\frac1{nm}\),考虑剩下的那个部分: \[ \begin{align*} \sum\limits_{i=1}^n\sum\limits_{j=1}^m(a_i+b_j)^k &= \sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{e=0}^k \binom ke a_i^e b_j^{k-e} \\ &= \sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{e=0}^k \frac{k!}{e!(k-e)!} a_i^e b_j^{k-e} \\ &= k! \sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{e=0}^k \frac{a_i^e}{e!} \frac{b_j^{k-e}}{(k-e)!} \\ &= k! \sum\limits_{e=0}^k \sum\limits_{i=1}^n \frac{a_i^e}{e!} \sum\limits_{j=1}^m \frac{b_j^{k-e}}{(k-e)!} \end{align*} \]
于是变成了 \(\sum\limits_{e=0}^k \frac{x^e}{e!} \sum\limits_{i=1}^n a_i^e,\sum\limits_{e=0}^k \frac{x^e}{e!} \sum\limits_{i=1}^n b_i^e\) 的卷积……
考虑如何对于所有 \(e\) 求出 \(\sum\limits_{i=1}^n a_i^e\)。
众所周知生成函数是万能的,故可以对于每个 \(a_i\) 构造生成函数然后加起来。
即 \[
\sum\limits_{i=1}^n a_i^e = [x^e]\sum\limits_{i=1}^n\frac1{1-a_ix}
\]
注意到如果右边是个 \(\prod\) 就好办了,直接提分母出来分治 NTT 然后求逆就行了。
但是人家是 \(\sum\) 喔!
怎么把 \(\sum\) 变成 \(\prod\) 呢?当然是 \(\ln\) 辣!
但是直接 \(\ln\) 似乎依然不可做……
注意到我们实际上是想要 \(\prod\limits_{i=1}^n (1-a_ix)\),又注意到如果结合 \(\ln\) 和求导的话就可以把它放回分母上。
即 \[
[\ln(1-a_ix)]' = -\frac{a_i}{1-a_ix}
\]
并且展开来会发现 \[ \frac1{1-a_ix} = -x[\ln(1-a_ix)]' + 1 \]
于是得到 \[ \begin{align*} \sum\limits_{i=1}^n \frac1{1-a_ix} &= n - x\sum\limits_{i=1}^n [\ln(1-a_ix)]' \\ &= n - x [\ln\prod\limits_{i=1}^n(1-a_ix)]' \end{align*} \]
惊了!居然得到了一个神奇的形式!
于是一遍分治 NTT 一遍多项式 \(\ln\) 外加求个导就搞定了,最后再做一次卷积。
复杂度 \(O(n \log^2 n)\)(视 \(n,m,t\) 均同阶)。
以及我从神鱼那里学来的多项式板子有些操作并不能直接适配分治 NTT……
随着 WA / TLE 的次数增多我总算是调出来了……
(一开始还以为是常数问题来着)
代码: 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
using namespace std;
const int BUFF_SIZE = 1 << 20;
char BUFF[BUFF_SIZE],*BB,*BE;
template<class T>
inline void read(T &x)
{
x = 0;
char ch = 0,w = 0;
for(;ch < '0' || ch > '9';w |= ch == '-',ch = gc());
for(;ch >= '0' && ch <= '9';x = (x << 3) + (x << 1) + (ch ^ '0'),ch = gc());
w && (x = -x);
}
const int N = 1 << 18;
const int mod = 998244353;
const int G = 3;
inline int fpow(int a,int b)
{
int ret = 1;
for(;b;b >>= 1)
(b & 1) && (ret = (long long)ret * a % mod),a = (long long)a * a % mod;
return ret;
}
struct poly
{
int a[N + 5];
inline const int &operator[](int x) const
{
return a[x];
}
inline int &operator[](int x)
{
return a[x];
}
inline void clear(int x = 0)
{
memset(a + x,0,(N - x + 1) << 2);
}
} f,g;
int lena,lenb,t,n,lg2[N + 5];
int a[N + 5],b[N + 5];
int rev[N + 5],fac[N + 5],ifac[N + 5],inv[N + 5];
int rt[N + 5],irt[N + 5];
inline void init(int len)
{
for(n = 1;n < len;n <<= 1);
for(register int i = 2;i <= n;++i)
lg2[i] = lg2[i >> 1] + 1;
int w = fpow(G,(mod - 1) / n);
rt[n >> 1] = 1;
for(register int i = (n >> 1) + 1;i <= n;++i)
rt[i] = (long long)rt[i - 1] * w % mod;
for(register int i = (n >> 1) - 1;i;--i)
rt[i] = rt[i << 1];
fac[0] = 1;
for(register int i = 1;i <= n;++i)
fac[i] = (long long)fac[i - 1] * i % mod;
ifac[n] = fpow(fac[n],mod - 2);
for(register int i = n;i;--i)
ifac[i - 1] = (long long)ifac[i] * i % mod;
for(register int i = 1;i <= n;++i)
inv[i] = (long long)ifac[i] * fac[i - 1] % mod;
}
inline void ntt(poly &a,int type,int n)
{
type == -1 && (reverse(a.a + 1,a.a + n),1);
int lg = lg2[n] - 1;
for(register int i = 0;i < n;++i)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << lg),
i < rev[i] && (swap(a[i],a[rev[i]]),1);
for(register int w = 2,m = 1;w <= n;w <<= 1,m <<= 1)
for(register int i = 0;i < n;i += w)
for(register int j = 0;j < m;++j)
{
int t = (long long)rt[m | j] * a[i | j | m] % mod;
a[i | j | m] = dec(a[i | j],t),a[i | j] = add(a[i | j],t);
}
if(type == -1)
for(register int i = 0;i < n;++i)
a[i] = (long long)a[i] * inv[n] % mod;
}
inline void mul(poly &a,const poly &b,int n)
{
static poly x,y;
int lim = 1;
for(;lim < (n << 1);lim <<= 1);
memcpy(x.a,a.a,lim << 2),memcpy(y.a,b.a,lim << 2);
memset(x.a + n,0,lim - n + 1 << 2),memset(y.a + n,0,lim - n + 1 << 2);
ntt(x,1,lim),ntt(y,1,lim);
for(register int i = 0;i < lim;++i)
x[i] = (long long)x[i] * y[i] % mod;
ntt(x,-1,lim);
memcpy(a.a,x.a,lim << 2);
}
inline poly inverse(const poly &f,int n)
{
static int s[30];
static poly g,h,q;
int lim = 1,top = 0;
g.clear();
for(;n > 1;s[++top] = n,n = (n + 1) >> 1);
g[0] = fpow(f[0],mod - 2);
for(;top;--top)
{
n = s[top];
for(;lim < (n << 1);lim <<= 1);
q = g,h = f,h.clear(n);
ntt(g,1,lim),ntt(h,1,lim);
for(register int i = 0;i < lim;++i)
g[i] = (long long)g[i] * g[i] % mod * h[i] % mod;
ntt(g,-1,lim);
for(register int i = 0;i < n;++i)
g[i] = dec(add(q[i],q[i]),g[i]);
g.clear(n);
}
return g;
}
inline void derivative(poly &f,int n)
{
for(register int i = 1;i < n;++i)
f[i - 1] = (long long)f[i] * i % mod;
f[n - 1] = 0;
}
inline void integral(poly &f,int n)
{
for(register int i = n - 1;~i;--i)
f[i + 1] = (long long)f[i] * inv[i + 1] % mod;
f[0] = 0;
}
inline poly ln(const poly &f,int n)
{
static poly g;
g = f,derivative(g,n),mul(g,inverse(f,n),n),g.clear(n),integral(g,n);
return g;
}
inline poly exp(const poly &f,int n)
{
static int s[30];
static poly g,h;
int lim = 1,top = 0;
g.clear();
for(;n > 1;s[++top] = n,n = (n + 1) >> 1);
g[0] = 1;
for(;top;--top)
{
n = s[top];
for(;lim < (n << 1);lim <<= 1);
h = g,g = ln(g,n);
for(register int i = 0;i < n;++i)
g[i] = dec(f[i],g[i]);
g[0] = add(g[0],1);
ntt(g,1,lim),ntt(h,1,lim);
for(register int i = 0;i < lim;++i)
g[i] = (long long)g[i] * h[i] % mod;
ntt(g,-1,lim);
g.clear(n);
}
return g;
}
inline poly power(const poly &f,int k,int n)
{
static poly g;
g = ln(f,n);
for(register int i = 0;i < n;++i)
g[i] = (long long)g[i] * k % mod;
g = exp(g,n);
return g;
}
namespace Mod_sqrt
{
typedef pair<int,int> cp;
int w;
inline cp operator*(const cp &a,const cp &b)
{
return cp(((long long)a.first * b.first % mod + (long long)a.second * b.second % mod * w % mod) % mod,((long long)a.first * b.second % mod + (long long)a.second * b.first % mod) % mod);
}
inline cp pow(cp a,int b)
{
cp ret(1,0);
for(;b;b >>= 1)
(b & 1) && (ret = ret * a,1),a = a * a;
return ret;
}
inline int mod_sqrt(int x)
{
int y = rand() % mod;
for(;fpow(w = ((long long)y * y % mod - x + mod) % mod,mod - 1 >> 1) <= 1;y = rand() % mod);
cp ret = pow(cp(y,1),mod + 1 >> 1);
return min(ret.first,mod - ret.first);
}
}
using Mod_sqrt::mod_sqrt;
inline poly sqrt(const poly &f,int n)
{
static int s[30];
static poly g,h;
int top = 0;
g.clear();
for(;n > 1;s[++top] = n,n = (n + 1) >> 1);
g[0] = mod_sqrt(f[0]);
for(;top;--top)
{
n = s[top];
for(register int i = 0;i < n;++i)
h[i] = add(g[i],g[i]);
h = inverse(h,n),mul(g,g,n);
for(register int i = 0;i < n;++i)
g[i] = add(g[i],f[i]);
mul(g,h,n);
}
return g;
}
void solve(poly &f,int *g,int l,int r,int L,int R,int len)
{
if(l == r)
{
l < len ? (f[L] = 1,f[R] = mod - g[l]) : (f[L] = 1,f[R] = 0);
return ;
}
int mid = l + r >> 1,MID = L + R >> 1;
solve(f,g,l,mid,L,MID,len),solve(f,g,mid + 1,r,MID + 1,R,len);
static poly x,y;
for(register int i = 0;i <= mid - l + 1;++i)
x[i] = f[L + i],y[i] = f[MID + 1 + i];
mul(x,y,mid - l + 2);
for(register int i = 0;i <= r - l + 1;++i)
f[L + i] = x[i];
}
int main()
{
read(lena),read(lenb);
for(register int i = 0;i < lena;++i)
read(a[i]);
for(register int i = 0;i < lenb;++i)
read(b[i]);
read(t),init(max(max(lena,lenb) + 1,++t) << 1);
solve(f,a,0,n / 2 - 1,0,n - 1,lena),solve(g,b,0,n / 2 - 1,0,n - 1,lenb);
f.clear(++lena),g.clear(++lenb);
f = ln(f,t),derivative(f,t),g = ln(g,t),derivative(g,t);
for(register int i = t - 1;i;--i)
f[i] = mod - f[i - 1];
f[0] = lena - 1;
for(register int i = t - 1;i;--i)
g[i] = mod - g[i - 1];
g[0] = lenb - 1;
for(register int i = 0;i < t;++i)
f[i] = (long long)f[i] * ifac[i] % mod;
for(register int i = 0;i < t;++i)
g[i] = (long long)g[i] * ifac[i] % mod;
mul(f,g,t);
for(register int i = 1;i < t;++i)
printf("%d\n",(int)((long long)f[i] * fac[i] % mod * inv[lena - 1] % mod * inv[lenb - 1] % mod));
}