鸽子写题了!!!
有个东西叫 Euler 变换。
似乎也叫做 Polya Exp 或者 Multiset 构造?
具体地,对于 \(\{f_i\}\) 的 OGF \(F(x)\),其 Euler 变换是这样的: \[ \mathcal E(F(x)) = \prod\limits_{i=1}^{\infty} \frac1{ (1-x^i)^{-f_i} } \]
做过付公主的背包或者遗忘的集合的同学应该很熟悉这个东西?
因为实际上就是背包,所以相当于 OGF 的 exp。
然后通过一些代数推导 \[ \begin{aligned} \mathcal E(F(x)) &= \prod\limits_{i=1}^{\infty} \frac1{ (1-x^i)^{-f_i} } \\ &= \exp\left(\sum\limits_{i=1}^{\infty} -f_i \ln(1-x^i) \right) \\ &= \exp\left(\sum\limits_{i=1}^{\infty} f_i \sum\limits_{t=1}^{\infty} \frac{ x^{it} }{t} \right) \\ &= \exp\left(\sum\limits_{t=1}^{\infty} \frac1t \sum\limits_{i=1}^{\infty} f_i x^{it} \right) \\ &= \exp\left(\sum\limits_{t=1}^{\infty} \frac{F(x^t)}{t}\right) \end{aligned} \]
Polya 的推导还不会……什么时候把群论学好了再回来填坑。
设无标号有根树的 OGF 为 \(F(x)\),可以列出方程 \[ F(x) = x\mathcal E(F(x)) \]
可以两边求导得到 \[ \begin{aligned} F'(x) &= \left(x\mathcal E(F(x))\right)' \\ &= \mathcal E(F(x)) + x \left(\mathcal E(F(x))\right)' \\ &= \mathcal E(F(x)) + x \exp\left(\sum\limits_{t=1}^{\infty} \frac{F(x^t)}{t}\right) \left(\sum\limits_{t=1}^{\infty} \frac{F(x^t)}{t}\right)' \\ &= \frac{F(x)}x + F(x) \sum\limits_{t=1}^{\infty} F'(x^t) x^{t-1} \end{aligned} \]
然后可以直接分治 NTT 解决。
但这样不好玩。
考虑牛顿迭代。
为了规避常数爆炸的 exp,可以将方程化为以下形式 \[ \ln\frac{F(x)}x - \sum\limits_{t=1}^{\infty} \frac{F(x^t)}t = 0 \]
考虑设 \(G(x) = \frac{F(x)}x\),\(H(G(x)) = \ln G(x) - \sum\limits_{t=1}^{\infty} \frac{x^t G(x^t)}t\),那么便是要解 \[ H(G(x)) = 0 \]
但是你可能会说后面那一大坨怎么办呢?
考虑平时牛顿迭代的过程:求得 \(G_0(x)\) 满足 \[
H(G_0(x)) \equiv 0 \pmod{x^n}
\]
然后求 \[ G(x) \equiv G_0(x) - \frac{H(G(x))}{H'(G(x))} \pmod{ x^{2n} } \]
于是注意到,在我们求 \(G(x)\) 时,\(\sum\limits_{t=2}^{\infty} \frac{x^t G(x^t)}{t}\) 是可以得知的。
所以用 \(\sum\limits_{t=2}^{\infty} \frac{x^t G_0(x^t)}{t}\) 替换之,并视为一个常数。
从而 \[
H(G(x)) = \ln G(x) - xG(x) - \sum\limits_{t=2}^{\infty} \frac{x^t G_0(x^t)}{t}
\]
且 \[ H'(G(x)) = \frac1{G(x)} - x \]
牛顿迭代即可。
但是题目要求的貌似是无根树呢……
考虑钦定一个特殊的点为根,比如重心。
然后用 \(f_n\) 减去根不是重心的情况。
根不是重心当且仅当其中一个子树的大小超过了 \(\left\lfloor\frac n2\right\rfloor\),于是答案为 \[ f_n - \sum\limits_{i=\left\lfloor\frac n2\right\rfloor+1}^{n-1} f_i f_{n-i} \]
不过,当 \(n\) 为偶数时,可能存在两个重心。
即存在一个子树大小恰为 \(\frac n2\)。
如果这棵子树和其他部分完全同构,那么只会被计算一次。
否则会重复算,需要减去。
此时答案为 \[
f_n - \sum\limits_{i=\frac n2+1}^{n-1} f_i f_{n-i} - \binom{f_{\frac n2}}{2}
\]
代码: 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
using namespace std;
const int N = 2e5;
const int mod = 998244353;
int n;
inline int fpow(int a,int b)
{
int ret = 1;
for(;b;b >>= 1)
(b & 1) && (ret = (long long)ret * a % mod),a = (long long)a * a % mod;
return ret;
}
namespace Poly
{
const int N = 1 << 19;
const int G = 3;
int lg2[N + 5];
int rev[N + 5],fac[N + 5],ifac[N + 5],inv[N + 5];
int rt[N + 5],irt[N + 5];
inline void init()
{
for(register int i = 2;i <= N;++i)
lg2[i] = lg2[i >> 1] + 1;
int w = fpow(G,(mod - 1) / N);
rt[N >> 1] = 1;
for(register int i = (N >> 1) + 1;i <= N;++i)
rt[i] = (long long)rt[i - 1] * w % mod;
for(register int i = (N >> 1) - 1;i;--i)
rt[i] = rt[i << 1];
fac[0] = 1;
for(register int i = 1;i <= N;++i)
fac[i] = (long long)fac[i - 1] * i % mod;
ifac[N] = fpow(fac[N],mod - 2);
for(register int i = N;i;--i)
ifac[i - 1] = (long long)ifac[i] * i % mod;
for(register int i = 1;i <= N;++i)
inv[i] = (long long)ifac[i] * fac[i - 1] % mod;
}
struct poly
{
vector<int> a;
inline poly(int x = 0)
{
x && (a.push_back(x),1);
}
inline poly(const vector<int> &o)
{
a = o,shrink();
}
inline poly(const poly &o)
{
a = o.a,shrink();
}
inline void shrink()
{
for(;!a.empty() && !a.back();a.pop_back());
}
inline int size() const
{
return a.size();
}
inline void resize(int x)
{
a.resize(x);
}
inline int operator[](int x) const
{
if(x < 0 || x >= size())
return 0;
return a[x];
}
inline void clear()
{
vector<int>().swap(a);
}
inline poly rever() const
{
return poly(vector<int>(a.rbegin(),a.rend()));
}
inline void ntt(int type = 1)
{
int n = size();
type == -1 && (reverse(a.begin() + 1,a.end()),1);
int lg = lg2[n] - 1;
for(register int i = 0;i < n;++i)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << lg),
i < rev[i] && (swap(a[i],a[rev[i]]),1);
for(register int w = 2,m = 1;w <= n;w <<= 1,m <<= 1)
for(register int i = 0;i < n;i += w)
for(register int j = 0;j < m;++j)
{
int t = (long long)rt[m | j] * a[i | j | m] % mod;
a[i | j | m] = dec(a[i | j],t),a[i | j] = add(a[i | j],t);
}
if(type == -1)
for(register int i = 0;i < n;++i)
a[i] = (long long)a[i] * inv[n] % mod;
}
friend inline poly operator+(const poly &a,const poly &b)
{
vector<int> ret(max(a.size(),b.size()));
for(register int i = 0;i < ret.size();++i)
ret[i] = add(a[i],b[i]);
return poly(ret);
}
friend inline poly operator-(const poly &a,const poly &b)
{
vector<int> ret(max(a.size(),b.size()));
for(register int i = 0;i < ret.size();++i)
ret[i] = dec(a[i],b[i]);
return poly(ret);
}
friend inline poly operator*(poly a,poly b)
{
if(a.a.empty() || b.a.empty())
return poly();
int lim = 1,tot = a.size() + b.size() - 1;
for(;lim < tot;lim <<= 1);
a.resize(lim),b.resize(lim);
a.ntt(),b.ntt();
for(register int i = 0;i < lim;++i)
a.a[i] = (long long)a[i] * b[i] % mod;
a.ntt(-1),a.shrink();
return a;
}
poly &operator+=(const poly &o)
{
resize(max(size(),o.size()));
for(register int i = 0;i < o.size();++i)
a[i] = add(a[i],o[i]);
return *this;
}
poly &operator-=(const poly &o)
{
resize(max(size(),o.size()));
for(register int i = 0;i < o.size();++i)
a[i] = dec(a[i],o[i]);
return *this;
}
poly &operator*=(poly o)
{
return (*this) = (*this) * o;
}
poly deriv() const
{
if(a.empty())
return poly();
vector<int> ret(size() - 1);
for(register int i = 0;i < size() - 1;++i)
ret[i] = (long long)(i + 1) * a[i + 1] % mod;
return poly(ret);
}
poly integ() const
{
if(a.empty())
return poly();
vector<int> ret(size() + 1);
for(register int i = 0;i < size();++i)
ret[i + 1] = (long long)a[i] * inv[i + 1] % mod;
return poly(ret);
}
inline poly modxn(int n) const
{
if(a.empty())
return poly();
n = min(n,size());
return poly(vector<int>(a.begin(),a.begin() + n));
}
inline poly inver(int m) const
{
poly ret(fpow(a[0],mod - 2));
for(register int k = 1;k < m;)
k <<= 1,ret = (ret * (2 - modxn(k) * ret)).modxn(k);
return ret.modxn(m);
}
inline pair<poly,poly> div(poly o) const
{
if(size() < o.size())
return make_pair(poly(),*this);
poly f,g;
f = (rever().modxn(size() - o.size() + 1) * o.rever().inver(size() - o.size() + 1)).modxn(size() - o.size() + 1).rever();
g = (modxn(o.size() - 1) - o.modxn(o.size() - 1) * f.modxn(o.size() - 1)).modxn(o.size() - 1);
return make_pair(f,g);
}
inline poly log(int m) const
{
return (deriv() * inver(m)).integ().modxn(m);
}
inline poly exp(int m) const
{
poly ret(1);
for(register int k = 1;k < m;)
k <<= 1,ret = (ret * (1 - ret.log(k) + modxn(k))).modxn(k);
return ret.modxn(m);
}
inline poly pow(int m,int k1,int k2 = -1) const
{
if(a.empty())
return poly();
if(k2 == -1)
k2 = k1;
int t = 0;
for(;t < size() && !a[t];++t);
if((long long)t * k1 >= m)
return poly();
poly ret;
ret.resize(m);
int u = fpow(a[t],mod - 2),v = fpow(a[t],k2);
for(register int i = 0;i < m - t * k1;++i)
ret.a[i] = (long long)operator[](i + t) * u % mod;
ret = ret.log(m - t * k1);
for(register int i = 0;i < ret.size();++i)
ret.a[i] = (long long)ret[i] * k1 % mod;
ret = ret.exp(m - t * k1),t *= k1,ret.resize(m);
for(register int i = m - 1;i >= t;--i)
ret.a[i] = (long long)ret[i - t] * v % mod;
for(register int i = 0;i < t;++i)
ret.a[i] = 0;
return ret;
}
};
}
using Poly::init;
using Poly::poly;
poly f,g,x;
int ans;
int main()
{
init();
scanf("%d",&n),f.resize(1),f.a[0] = 1,x.resize(2),x.a[1] = 1;
for(register int k = 1;k < n;)
{
k <<= 1,g.resize(k);
for(register int i = 0;i < k;++i)
g.a[i] = 0;
for(register int t = 2;t < k;++t)
for(register int i = 0;i * t + t < k;++i)
g.a[i * t + t] = (g.a[i * t + t] + (long long)f[i] * Poly::inv[t]) % mod;
f = f - ((f.log(k) - (x * f).modxn(k) - g) * (f.inver(k) - x).inver(k)).modxn(k);
}
f.resize(n + 1);
for(register int i = n;~i;--i)
f.a[i] = f[i - 1];
ans = f[n];
for(register int i = (n >> 1) + 1;i < n;++i)
ans = (ans - (long long)f[i] * f[n - i] % mod + mod) % mod;
if(!(n & 1))
ans = (ans - (long long)f[n >> 1] * (f[n >> 1] - 1 + mod) % mod * Poly::inv[2] % mod + mod) % mod;
printf("%d\n",ans);
}