计数使我快乐(
设 \(T_1,T_2\) 表示两棵树,\(E_1,E_2\) 表示它们的边集,\(k(E)\) 表示 \(E\) 中的边构成的森林的连通块个数。
对于 \({\rm op}=0\):
这个是 PJ T2 难度吧(
对于 \({\rm op}=1\):
首先略过 \(y=1\) 的平凡情况。
考虑对 \(E_1 \cap E_2\) 应用子集反演:
\[ \begin{aligned} \sum\limits_{E_2} y^{k(E_1 \cap E_2)} &= \sum\limits_{E_2} y^{n - |E_1 \cap E_2|} \\ &= \sum\limits_{E_2} \sum\limits_{S \subseteq E_1 \cap E_2} \sum\limits_{T \subseteq S} (-1)^{|S| - |T|} y^{n-|T|} \\ &= \sum\limits_{S\subseteq E_1} \left(\sum\limits_{T\subseteq S}(-1)^{|S|-|T|} y^{n-|T|}\right) \sum\limits_{S \subseteq E_2} 1 \\ &= \sum\limits_{S\subseteq E_1} y^{n-|S|} \left(\sum\limits_{T\subseteq S}(-y)^{|S|-|T|}\right) \sum\limits_{S \subseteq E_2} 1 \\ &= \sum\limits_{S\subseteq E_1} y^{n-|S|} (1-y)^{|S|} \sum\limits_{S \subseteq E_2} 1 \\ \end{aligned} \]
设 \(S\) 中的边构成 \(k=n-|S|\) 个连通块,其点数分别为 \(a_1,a_2,\dots,a_k\)。
那么有结论 \[
\sum\limits_{S \subseteq E_2} 1 = n^{k-2} \prod\limits_{i=1}^k a_i
\]
证明可以参见 rqy 的博客或者 shadowice1984 的题解,这里不再赘述了。
(Prufer 序列好!)
于是 \[ \begin{aligned} & \sum\limits_{S\subseteq E_1} y^{n-|S|} (1-y)^{|S|} \sum\limits_{S \subseteq E_2} 1 \\ =& \sum\limits_{S\subseteq E_1} y^{k} (1-y)^{n-k} n^{k-2} \prod\limits_{i=1}^k a_i \\ =& \frac{(1-y)^n}{n^2} \sum\limits_{S\subseteq E_1} \prod\limits_{i=1}^k \frac{ny}{1-y} a_i \end{aligned} \]
设 \(c = \frac{ny}{1-y}\),考虑后一部分。
相当于在 \(T_1\) 中划分出 \(k\) 个连通块,第 \(i\) 个连通块有 \(ca_i\) 的贡献。
这一问题有显然的 \(O(n^2)\) 的树形 DP 解法。
而可以像 rqy 一样使用生成函数进行优化 DP 做到 \(O(n)\)。
但这里给出一个更为简单的做法。
考虑 \(ca_i\) 的组合意义,相当于在每个连通块中选一个点,每个点有 \(c\) 的贡献。
于是可以简单地设 \(f_{u,0/1}\) 表示 \(u\) 所在的连通块是否选出了这个点的贡献和。
同样是 \(O(n)\) 的。
对于 \({\rm op}=2\):
类比上一部分,此处略去推导过程,则需要计算 \[
\frac{(1-y)^n}{n^4} \sum\limits_{S} \prod\limits_{i=1}^k \frac{n^2y}{1-y} a_i^2
\]
对于后一部分的和式,考虑枚举所有的 \(k\) 和 \(a_1,a_2,\dots,a_k\)。
\[
\begin{aligned}
& \sum\limits_{k=1}^n \sum\limits_{a_1+a_2+\dots+a_k=n} \frac{n!}{k!\prod_{i=1}^k a_i!} \prod\limits_{i=1}^k \frac{n^2y}{1-y} a_i^2 \cdot a_i^{a_i-2} \\
=& n! \sum\limits_{k=1}^n \frac1{k!} \sum\limits_{a_1+a_2+\dots+a_k=n} \prod\limits_{i=1}^k \frac{n^2y}{(1-y)a_i!} a_i^{a_i}
\end{aligned}
\]
考虑构造生成函数来计算这个东西,设 \[ F(x) = \frac{n^2y}{1-y} \sum\limits_{i=1}^{\infty} \frac{i^i}{i!} x^i \]
则答案等于 \[ \frac{(1-y)^nn!}{n^4} [x^n] \sum\limits_{k=1}^n \frac1{k!} F^k(x) \]
注意到这是一个 exp 的形式,所以答案就是 \[ \frac{(1-y)^nn!}{n^4} [x^n] \exp F(x) \]
代码: 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
using namespace std;
const int N = 1e5;
const int mod = 998244353;
inline int fpow(int a,int b)
{
int ret = 1;
for(;b;b >>= 1)
(b & 1) && (ret = (long long)ret * a % mod),a = (long long)a * a % mod;
return ret;
}
int n,y,op;
namespace Poly
{
const int N = 1 << 18;
const int G = 3;
int lg2[N + 5];
int rev[N + 5],fac[N + 5],ifac[N + 5],inv[N + 5];
int rt[N + 5],irt[N + 5];
inline void init()
{
for(register int i = 2;i <= N;++i)
lg2[i] = lg2[i >> 1] + 1;
int w = fpow(G,(mod - 1) / N);
rt[N >> 1] = 1;
for(register int i = (N >> 1) + 1;i <= N;++i)
rt[i] = (long long)rt[i - 1] * w % mod;
for(register int i = (N >> 1) - 1;i;--i)
rt[i] = rt[i << 1];
fac[0] = 1;
for(register int i = 1;i <= N;++i)
fac[i] = (long long)fac[i - 1] * i % mod;
ifac[N] = fpow(fac[N],mod - 2);
for(register int i = N;i;--i)
ifac[i - 1] = (long long)ifac[i] * i % mod;
for(register int i = 1;i <= N;++i)
inv[i] = (long long)ifac[i] * fac[i - 1] % mod;
}
struct poly
{
vector<int> a;
inline poly(int x = 0)
{
x && (a.push_back(x),1);
}
inline poly(const vector<int> &o)
{
a = o,shrink();
}
inline void shrink()
{
for(;!a.empty() && !a.back();a.pop_back());
}
inline int size() const
{
return a.size();
}
inline void resize(int x)
{
a.resize(x);
}
inline int operator[](int x) const
{
if(x < 0 || x >= size())
return 0;
return a[x];
}
inline int &operator[](int x)
{
return a[x];
}
inline void clear()
{
vector<int>().swap(a);
}
inline void ntt(int type = 1)
{
int n = size();
type == -1 && (reverse(a.begin() + 1,a.end()),1);
int lg = lg2[n] - 1;
for(register int i = 0;i < n;++i)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << lg),
i < rev[i] && (swap(a[i],a[rev[i]]),1);
for(register int w = 2,m = 1;w <= n;w <<= 1,m <<= 1)
for(register int i = 0;i < n;i += w)
for(register int j = 0;j < m;++j)
{
int t = (long long)rt[m | j] * a[i | j | m] % mod;
a[i | j | m] = dec(a[i | j],t),a[i | j] = add(a[i | j],t);
}
if(type == -1)
for(register int i = 0;i < n;++i)
a[i] = (long long)a[i] * inv[n] % mod;
}
friend inline poly operator+(const poly &a,const poly &b)
{
vector<int> ret(max(a.size(),b.size()));
for(register int i = 0;i < ret.size();++i)
ret[i] = add(a[i],b[i]);
return poly(ret);
}
friend inline poly operator-(const poly &a,const poly &b)
{
vector<int> ret(max(a.size(),b.size()));
for(register int i = 0;i < ret.size();++i)
ret[i] = dec(a[i],b[i]);
return poly(ret);
}
friend inline poly operator*(poly a,poly b)
{
if(a.a.empty() || b.a.empty())
return poly();
int lim = 1,tot = a.size() + b.size() - 1;
for(;lim < tot;lim <<= 1);
a.resize(lim),b.resize(lim);
a.ntt(),b.ntt();
for(register int i = 0;i < lim;++i)
a[i] = (long long)a[i] * b[i] % mod;
a.ntt(-1),a.shrink();
return a;
}
poly &operator+=(const poly &o)
{
resize(max(size(),o.size()));
for(register int i = 0;i < o.size();++i)
a[i] = add(a[i],o[i]);
return *this;
}
poly &operator-=(const poly &o)
{
resize(max(size(),o.size()));
for(register int i = 0;i < o.size();++i)
a[i] = dec(a[i],o[i]);
return *this;
}
poly &operator*=(poly o)
{
return (*this) = (*this) * o;
}
poly deriv() const
{
if(a.empty())
return poly();
vector<int> ret(size() - 1);
for(register int i = 0;i < size() - 1;++i)
ret[i] = (long long)(i + 1) * a[i + 1] % mod;
return poly(ret);
}
poly integ() const
{
if(a.empty())
return poly();
vector<int> ret(size() + 1);
for(register int i = 0;i < size();++i)
ret[i + 1] = (long long)a[i] * inv[i + 1] % mod;
return poly(ret);
}
inline poly modxn(int n) const
{
n = min(n,size());
return poly(vector<int>(a.begin(),a.begin() + n));
}
inline poly inver(int m) const
{
poly ret(fpow(a[0],mod - 2));
for(register int k = 1;k < m;)
k <<= 1,ret = (ret * (2 - modxn(k) * ret)).modxn(k);
return ret.modxn(m);
}
inline poly log(int m) const
{
return (deriv() * inver(m)).integ().modxn(m);
}
inline poly exp(int m) const
{
poly ret(1);
for(register int k = 1;k < m;)
k <<= 1,ret = (ret * (1 - ret.log(k) + modxn(k))).modxn(k);
return ret.modxn(m);
}
};
}
using Poly::init;
using Poly::poly;
namespace Task0
{
unordered_map<int,unordered_set<int>> vis;
int ans,k;
void main()
{
k = n;
int u,v;
for(register int i = 2;i <= n;++i)
scanf("%d%d",&u,&v),u > v && (swap(u,v),1),vis[u].insert(v);
for(register int i = 2;i <= n;++i)
scanf("%d%d",&u,&v),u > v && (swap(u,v),1),k -= vis.count(u) && vis[u].count(v);
ans = fpow(y,k);
printf("%d\n",ans);
}
}
namespace Task1
{
int to[(N << 1) + 5],pre[(N << 1) + 5],first[N + 5];
inline void add_edge(int u,int v)
{
static int tot = 0;
to[++tot] = v,pre[tot] = first[u],first[u] = tot;
}
int fa[N + 5];
int c,ans,f[N + 5][2];
void dfs(int p)
{
f[p][0] = 1,f[p][1] = c;
for(register int i = first[p];i;i = pre[i])
if(to[i] ^ fa[p])
fa[to[i]] = p,
dfs(to[i]),
f[p][1] = ((long long)f[p][0] * f[to[i]][1] + (long long)f[p][1] * f[to[i]][0] + (long long)f[p][1] * f[to[i]][1]) % mod,
f[p][0] = ((long long)f[p][0] * f[to[i]][0] + (long long)f[p][0] * f[to[i]][1]) % mod;
}
void main()
{
if(y == 1)
{
printf("%d\n",fpow(n,n - 2));
return ;
}
int u,v;
for(register int i = 2;i <= n;++i)
scanf("%d%d",&u,&v),add_edge(u,v),add_edge(v,u);
c = (long long)n * y % mod * fpow(dec(1,y),mod - 2) % mod;
dfs(1);
ans = (long long)fpow(dec(1,y),n) * fpow(n,mod - 3) % mod * f[1][1] % mod;
printf("%d\n",ans);
}
}
namespace Task2
{
poly f;
int c,ans;
void main()
{
if(y == 1)
{
printf("%d\n",fpow(n,2 * n - 4));
return ;
}
init();
c = (long long)n * n % mod * y % mod * fpow(dec(1,y),mod - 2) % mod;
f.resize(n + 1);
for(register int i = 1;i <= n;++i)
f[i] = (long long)c * fpow(i,i) % mod * Poly::ifac[i] % mod;
f = f.exp(n + 1),ans = (long long)fpow(dec(1,y),n) * Poly::fac[n] % mod * fpow(n,mod - 5) % mod * f[n] % mod;
printf("%d\n",ans);
}
}
int main()
{
scanf("%d%d%d",&n,&y,&op);
if(!op)
Task0::main();
else if(op == 1)
Task1::main();
else
Task2::main();
}