LibreOJ 3058 「HNOI2019」白兔之舞

为了好看,设 \(W = w\)

用点普及知识可以知道答案实际上就是 \[ {\rm ans}_t = \sum\limits_{m=1}^L [m \equiv t \pmod k] \binom Lm W^m_{x,y} \]

然后套个单位根反演 \[ \begin{aligned} {\rm ans}_t &= \sum\limits_{m=1}^L [m \equiv t \pmod k] \binom Lm W^m_{x,y} \\ &= \frac 1k \sum\limits_{d=0}^{k-1} \omega^{-dt}_k\sum\limits_{m=1}^L \binom Lm W^m_{x,y} \omega^{dm}_k \\ &= \frac 1k \sum\limits_{d=0}^{k-1} \omega^{-dt}_k (W \omega_k^d + I)^L_{x,y} \end{aligned} \]

\(c_d = (W \omega_k^d + I)^L_{x,y}\)
那么原式就变成了 \[ {\rm ans}_t = \frac 1k \sum\limits_{d=0}^{k-1} c_d \omega^{-dt}_k \]

然后你发现这是 DFT 的标准形式。
然后你敲了个 FFT 上去。
然后然后然后你发现 \(k\) 不一定是二的次幂。

然后考虑多点求值(大雾)
然后考虑使用 Bluestein's Algorithm。
(没有写进标签是因为个人感觉这个东西在 OI 界大概也就当个 trick 用)
大概就是把 \(dt\) 拆成 \(\frac{(d+t)^2}2 - \frac{d^2}2 - \frac{t^2}2\)

然后会发现好像没有二次剩余耶(
那么就拆成 \(\binom{d+t}2 - \binom d2 - \binom t2\) 就好辣(

\[ \begin{aligned} {\rm ans}_t &= \frac 1k \sum\limits_{d=0}^{k-1} c_d \omega^{-dt}_k \\ &= \frac 1k \sum\limits_{d=0}^{k-1} c_d \omega^{-\binom{d+t}2 + \binom d2 + \binom t2}_k \\ &= \frac{\omega^{\binom t2}}k \sum\limits_{d=0}^{k-1} c_d \omega^{\binom d2}_k \cdot \omega^{-\binom{d+t}2}_k \end{aligned} \]

\(f_i = c_i \omega_k^{\binom i2},g_i = \omega_k^{-\binom i2}\),那么就是求一个 \[ {\rm ans}_t = \frac{\omega^{\binom t2}}k \sum\limits_{d=0}^{k-1} f_d g_{d+t} \]

这个可以简单地设 \(g'_{2k - i - 1} = g_i\) 解决。 \[ {\rm ans}_t = \frac{\omega^{\binom t2}}k \sum\limits_{d=0}^{k-1} f_d g'_{2k-d-t-1} \]

当然,要先求原根再动手(

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define add(a,b) (a + b >= mod ? a + b - mod : a + b)
#define dec(a,b) (a < b ? a - b + mod : a - b)
using namespace std;
const int N = 3;
const int K = 1 << 16;
int n,k,ki,L,x,y,mod,len;
int G,rt[K + 5],ans[K + 5];
inline int fpow(int a,int b)
{
int ret = 1;
for(;b;b >>= 1)
(b & 1) && (ret = (long long)ret * a % mod),a = (long long)a * a % mod;
return ret;
}
struct Matrix
{
int a[N + 5][N + 5];
inline Matrix()
{
memset(a,0,sizeof a);
}
inline Matrix(int)
{
memset(a,0,sizeof a);
for(register int i = 1;i <= n;++i)
a[i][i] = 1;
}
inline int *operator[](const int &x)
{
return a[x];
}
inline const int *operator[](const int &x) const
{
return a[x];
}
inline Matrix operator*(const int &x) const
{
Matrix ret;
for(register int i = 1;i <= n;++i)
for(register int j = 1;j <= n;++j)
ret[i][j] = (long long)a[i][j] * x % mod;
return ret;
}
inline Matrix operator+(const Matrix &o) const
{
Matrix ret;
for(register int i = 1;i <= n;++i)
for(register int j = 1;j <= n;++j)
ret[i][j] = (a[i][j] + o[i][j]) % mod;
return ret;
}
inline Matrix operator*(const Matrix &o) const
{
Matrix ret;
for(register int i = 1;i <= n;++i)
for(register int j = 1;j <= n;++j)
for(register int k = 1;k <= n;++k)
ret[i][j] = (ret[i][j] + (long long)a[i][k] * o[k][j]) % mod;
return ret;
}
} w;
inline Matrix fpow(Matrix a,int b)
{
Matrix ret(1);
for(;b;b >>= 1)
(b & 1) && (ret = ret * a,1),a = a * a;
return ret;
}
namespace Poly
{
const int N = 1 << 18;
const double pi = acos(-1);
const int W = 1 << 15;
int n;
int lg2[N + 5],rev[N + 5];
struct poly
{
int a[N + 5];
inline const int &operator[](int x) const
{
return a[x];
}
inline int &operator[](int x)
{
return a[x];
}
inline void clear(int x = 0)
{
memset(a + x,0,(N - x + 1) << 2);
}
} f,g;
struct cp
{
double a,b;
inline void operator+=(const cp &o)
{
a += o.a,b += o.b;
}
inline cp operator+(const cp &o) const
{
return (cp){a + o.a,b + o.b};
}
inline cp operator-(const cp &o) const
{
return (cp){a - o.a,b - o.b};
}
inline cp operator*(const cp &o) const
{
return (cp){a * o.a - b * o.b,a * o.b + b * o.a};
}
inline void operator*=(const cp &o)
{
*this = *this * o;
}
inline cp operator*(const double &o) const
{
return (cp){a * o,b * o};
}
inline cp operator~() const
{
return (cp){a,-b};
}
} rt[N + 5];
inline void init(int len)
{
for(n = 1;n < len;n <<= 1);
for(register int i = 2;i <= n;++i)
lg2[i] = lg2[i >> 1] + 1;
for(register int i = 0;i <= (n >> 1);++i)
rt[(n >> 1) + i] = (cp){cos(2 * pi * i / n),sin(2 * pi * i / n)};
for(register int i = (n >> 1) - 1;i;--i)
rt[i] = rt[i << 1];
}
inline void fft(cp *a,int type,int n)
{
type == -1 && (reverse(a + 1,a + n),1);
int lg = lg2[n] - 1;
for(register int i = 0;i < n;++i)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << lg),
i < rev[i] && (swap(a[i],a[rev[i]]),1);
for(register int w = 2,m = 1;w <= n;w <<= 1,m <<= 1)
for(register int i = 0;i < n;i += w)
for(register int j = 0;j < m;++j)
{
cp t = rt[m | j] * a[i | j | m];
a[i | j | m] = a[i | j] - t,a[i | j] += t;
}
if(type == -1)
for(register int i = 0;i < n;++i)
a[i].a /= n,a[i].b /= n;
}
inline void mul(poly &a,const poly &b,int n)
{
static cp f[N + 5],g[N + 5],h[N + 5];
int lim = 1;
memset(f,0,sizeof f),memset(g,0,sizeof g);
for(;lim < (n << 1);lim <<= 1);
for(register int i = 0;i < n;++i)
f[i] = (cp){a[i] / W,a[i] % W},g[i] = (cp){b[i] / W,b[i] % W};
fft(f,1,lim),fft(g,1,lim);
for(register int i = 0;i < lim;++i)
h[i] = ~f[(lim - i) % lim];
for(register int i = 0;i < lim;++i)
f[i] *= g[i],g[i] *= h[i];
fft(f,-1,lim),fft(g,-1,lim);
for(register int i = 0;i < lim;++i)
{
long long ac = (f[i].a + g[i].a) / 2 + 0.5;
long long bd = g[i].a - ac + 0.5;
long long bcad = f[i].b + 0.5;
a[i] = ((ac % mod * W % mod * W % mod) % mod + (bcad % mod * W % mod) % mod + bd % mod) % mod;
}
}
}
int p[N + 5],t,cnt;
int main()
{
scanf("%d%d%d%d%d%d",&n,&k,&L,&x,&y,&mod);
len = k << 1,Poly::init(len << 1);
t = mod - 1;
for(register int i = 2;i * i <= t;++i)
{
if(!(t % i))
p[++cnt] = i;
for(;!(t % i);t /= i);
}
t > 1 && (p[++cnt] = t);
for(register int i = 2,flag;i < mod;++i)
{
flag = 1;
for(register int j = 1;j <= cnt;++j)
if(fpow(i,(mod - 1) / p[j]) == 1)
{
flag = 0;
break;
}
if(flag)
{
G = i;
break;
}
}
for(register int i = 0;i < k;++i)
rt[i] = fpow(G,(mod - 1) / k * i);
for(register int i = 1;i <= n;++i)
for(register int j = 1;j <= n;++j)
scanf("%d",w.a[i] + j);
for(register int i = 0;i < k;++i)
Poly::f[i] = (long long)fpow(w * rt[i] + Matrix(1),L)[x][y] * rt[(long long)i * (i - 1) / 2 % k] % mod;
for(register int i = 0;i < len - 1;++i)
Poly::g[len - i - 1] = rt[(k - (long long)i * (i - 1) / 2 % k) % k];
Poly::mul(Poly::f,Poly::g,len);
ki = fpow(k,mod - 2);
for(register int i = 0;i < k;++i)
ans[i] = (long long)Poly::f[len - i - 1] * rt[(long long)i * (i - 1) / 2 % k] % mod * ki % mod;
for(register int i = 0;i < k;++i)
printf("%d\n",ans[i]);
}