先来铺垫一个结论。
引理.
模质数 \(q\) 意义下 \(n \times m\) 的秩为 \(r\) 的矩阵的个数为 \[ q^{r(r-1)/2} (r!)_q \binom nr_q \binom mr_q \]
证明:
显然秩为 \(r\) 的 \(r \times m\) 矩阵个数为 \[
\prod_{i=0}^{r-1} (q^m - q^i) = q^{r(r-1)/2} (r!)_q \binom mr_q
\]
插入剩下的数的方案数是 \[ [z^{n-r}] \prod_{i=0}^r \frac1{1-q^iz} \]
用类似 \(q\)-二项式定理证明的方法可知其等于 \(\binom nr_q\)。
来看这题。
考虑斯特林容斥,这样去掉两个限制的 \(i\times j\times H\) 的立方体的个数就是 \[
\prod_{k=1}^H q^{r_k(r_k-1)/2} (r_k!)_q \binom i{r_k}_q \binom j{r_k}_q
\]
可以提出 \(\prod_{k=1}^H q^{r_k(r_k-1)/2} (r_k!)_q\),那么除此之外总共就是 \[ \left(\sum_{i=1}^L (-1)^{L-i} {L\brack i} \prod_{k=1}^H \binom i{r_k}_q\right)\left(\sum_{j=1}^W (-1)^{W-j} {W \brack j} \prod_{k=1}^H \binom j{r_k}_q\right) \]
这东西不像能结合起来算的样子,所以考虑算出所有 \[ f_i = \prod_{k=1}^H \binom i{r_k}_q \]
注意到 \[ \frac{f_i}{ f_{i-1} } = \prod_{k=1}^H \frac{1-q^i}{ 1-q^{i-r_k} } \]
那么用 CZT 算出 \[ \prod_{k=1}^H (1-q^{-r_k}z) = \exp\left(-\sum_{i\ge 1} \frac{z^i}i \sum_{k=1}^H q^{-ir_k}\right) \]
之后再做一次 CZT 即可。
接下来算答案。
就是计算 \[
\newcommand\me{ \mathrm e }
\sum_{i\ge 0} f_i [t^i] \me^{t\ln(1+z)} = \sum_{i\ge 0} f_i [t^i] (1+z)^t
\]
转置一下可以发现就是下降幂转普通幂: \[ \sum_{i\ge 0} f_i [z^i] \me^{t\ln(1+z)} = \sum_{i\ge 0} f_i \binom ti \]
分治 NTT 即可。
代码: 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
using ll = long long;
using namespace std;
const int mod = 998244353;
inline int norm(int x) {
return x >= mod ? x - mod : x;
}
inline int reduce(int x) {
return x < 0 ? x + mod : x;
}
inline int neg(int x) {
return x ? mod - x : 0;
}
inline void add(int &x, int y) {
if ((x += y - mod) < 0)
x += mod;
}
inline void sub(int &x, int y) {
if ((x -= y) < 0)
x += mod;
}
inline void fam(int &x, int y, int z) {
x = (x + (ll)y * z) % mod;
}
inline int qpow(int a, int b) {
int ret = 1;
for (; b; b >>= 1)
(b & 1) && (ret = (ll)ret * a % mod),
a = (ll)a * a % mod;
return ret;
}
const int N = 1e5;
namespace Poly {
const int LG = 18;
const int N = 1 << LG + 1;
const int G = 3;
int lg2[N + 5];
int fac[N + 5], ifac[N + 5], inv[N + 5];
int rt[N + 5];
inline void init() {
for (int i = 2; i <= N; ++i)
lg2[i] = lg2[i >> 1] + 1;
rt[0] = 1, rt[1 << LG] = qpow(G, (mod - 1) >> LG + 2);
for (int i = LG; i; --i)
rt[1 << i - 1] = (ll)rt[1 << i] * rt[1 << i] % mod;
for (int i = 1; i < N; ++i)
rt[i] = (ll)rt[i & i - 1] * rt[i & -i] % mod;
fac[0] = 1;
for (int i = 1; i <= N; ++i)
fac[i] = (ll)fac[i - 1] * i % mod;
ifac[N] = qpow(fac[N], mod - 2);
for (int i = N; i; --i)
ifac[i - 1] = (ll)ifac[i] * i % mod;
for (int i = 1; i <= N; ++i)
inv[i] = (ll)ifac[i] * fac[i - 1] % mod;
}
struct poly {
vector<int> a;
inline poly(int x = 0) {
if (x)
a.push_back(x);
}
inline poly(const vector<int> &o) {
a = o;
}
inline poly(const poly &o) {
a = o.a;
}
inline int size() const {
return a.size();
}
inline bool empty() const {
return a.empty();
}
inline void resize(int x) {
a.resize(x);
}
inline int operator[](int x) const {
if (x < 0 || x >= size())
return 0;
return a[x];
}
inline void clear() {
vector<int>().swap(a);
}
inline poly modxn(int n) const {
if (a.empty())
return poly();
n = min(n, size());
return poly(vector<int>(a.begin(), a.begin() + n));
}
inline poly rever() const {
return poly(vector<int>(a.rbegin(), a.rend()));
}
inline void dif() {
int n = size();
for (int i = 0, len = n >> 1; len; ++i, len >>= 1)
for (int j = 0, *w = rt; j < n; j += len << 1, ++w)
for (int k = j; k < j + len; ++k) {
int R = (ll)*w * a[k + len] % mod;
a[k + len] = reduce(a[k] - R),
add(a[k], R);
}
}
inline void dit() {
int n = size();
for (int i = 0, len = 1; len < n; ++i, len <<= 1)
for (int j = 0, *w = rt; j < n; j += len << 1, ++w)
for (int k = j; k < j + len; ++k) {
int R = norm(a[k] + a[k + len]);
a[k + len] = (ll)*w * (a[k] - a[k + len] + mod) % mod,
a[k] = R;
}
reverse(a.begin() + 1, a.end());
for (int i = 0; i < n; ++i)
a[i] = (ll)a[i] * inv[n] % mod;
}
inline void ntt(int type = 1) {
type == 1 ? dif() : dit();
}
friend inline poly operator+(const poly &a, const poly &b) {
vector<int> ret(max(a.size(), b.size()));
for (int i = 0; i < ret.size(); ++i)
ret[i] = norm(a[i] + b[i]);
return poly(ret);
}
friend inline poly operator-(const poly &a, const poly &b) {
vector<int> ret(max(a.size(), b.size()));
for (int i = 0; i < ret.size(); ++i)
ret[i] = reduce(a[i] - b[i]);
return poly(ret);
}
friend inline poly operator*(poly a, poly b) {
if (a.empty() || b.empty())
return poly();
if (a.size() < 40 || b.size() < 40) {
if (a.size() > b.size())
swap(a, b);
poly ret;
ret.resize(a.size() + b.size() - 1);
for (int i = 0; i < ret.size(); ++i)
for (int j = 0; j <= i && j < a.size(); ++j)
ret.a[i] = (ret[i] + (ll)a[j] * b[i - j]) % mod;
return ret;
}
int lim = 1, tot = a.size() + b.size() - 1;
for (; lim < tot; lim <<= 1);
a.resize(lim), b.resize(lim);
a.ntt(), b.ntt();
for (int i = 0; i < lim; ++i)
a.a[i] = (ll)a[i] * b[i] % mod;
a.ntt(-1), a.resize(tot);
return a;
}
poly &operator+=(const poly &o) {
resize(max(size(), o.size()));
for (int i = 0; i < o.size(); ++i)
add(a[i], o[i]);
return *this;
}
poly &operator-=(const poly &o) {
resize(max(size(), o.size()));
for (int i = 0; i < o.size(); ++i)
sub(a[i], o[i]);
return *this;
}
poly &operator*=(poly o) {
return (*this) = (*this) * o;
}
poly deriv() const {
if (empty())
return poly();
vector<int> ret(size() - 1);
for (int i = 0; i < size() - 1; ++i)
ret[i] = (ll)(i + 1) * a[i + 1] % mod;
return poly(ret);
}
poly integ() const {
if (empty())
return poly();
vector<int> ret(size() + 1);
for (int i = 0; i < size(); ++i)
ret[i + 1] = (ll)a[i] * inv[i + 1] % mod;
return poly(ret);
}
inline poly inver(int m) const {
poly ret(qpow(a[0], mod - 2)), f, g;
for (int k = 1; k < m;) {
k <<= 1, f.resize(k), g.resize(k);
for (int i = 0; i < k; ++i)
f.a[i] = operator[](i), g.a[i] = ret[i];
f.ntt(), g.ntt();
for (int i = 0; i < k; ++i)
f.a[i] = (ll)f[i] * g[i] % mod;
f.ntt(-1);
for (int i = 0; i < (k >> 1); ++i)
f.a[i] = 0;
f.ntt();
for (int i = 0; i < k; ++i)
f.a[i] = (ll)f[i] * g[i] % mod;
f.ntt(-1);
ret.resize(k);
for (int i = (k >> 1); i < k; ++i)
ret.a[i] = neg(f[i]);
}
return ret.modxn(m);
}
inline pair<poly, poly> div(poly o) const {
if (size() < o.size())
return make_pair(poly(), *this);
poly f, g;
f = (rever().modxn(size() - o.size() + 1) * o.rever().inver(size() - o.size() + 1))
.modxn(size() - o.size() + 1).rever();
g = (modxn(o.size() - 1) - o.modxn(o.size() - 1) * f.modxn(o.size() - 1)).modxn(o.size() - 1);
return make_pair(f, g);
}
inline poly log(int m) const {
return (deriv() * inver(m)).integ().modxn(m);
}
inline poly exp(int m) const {
poly ret(1), iv, it, d = deriv(), itd, itd0, t1;
if (m < 70) {
ret.resize(m);
for (int i = 1; i < m; ++i) {
for (int j = 1; j <= i; ++j)
ret.a[i] = (ret[i] + (ll)j * operator[](j) % mod * ret[i - j]) % mod;
ret.a[i] = (ll)ret[i] * inv[i] % mod;
}
return ret;
}
for (int k = 1; k < m;) {
k <<= 1;
it.resize(k >> 1);
for (int i = 0; i < (k >> 1); ++i)
it.a[i] = ret[i];
itd = it.deriv(), itd.resize(k >> 1);
iv = ret.inver(k >> 1), iv.resize(k >> 1);
it.ntt(), itd.ntt(), iv.ntt();
for (int i = 0; i < (k >> 1); ++i)
it.a[i] = (ll)it[i] * iv[i] % mod,
itd.a[i] = (ll)itd[i] * iv[i] % mod;
it.ntt(-1), itd.ntt(-1), sub(it.a[0], 1);
for (int i = 0; i < k - 1; ++i)
sub(itd.a[i % (k >> 1)], d[i]);
itd0.resize((k >> 1) - 1);
for (int i = 0; i < (k >> 1) - 1; ++i)
itd0.a[i] = d[i];
itd0 = (itd0 * it).modxn((k >> 1) - 1);
t1.resize(k - 1);
for (int i = (k >> 1) - 1; i < k - 1; ++i)
t1.a[i] = itd[(i + (k >> 1)) % (k >> 1)];
for (int i = k >> 1; i < k - 1; ++i)
sub(t1.a[i], itd0[i - (k >> 1)]);
t1 = t1.integ();
for (int i = 0; i < (k >> 1); ++i)
t1.a[i] = t1[i + (k >> 1)];
for (int i = (k >> 1); i < k; ++i)
t1.a[i] = 0;
t1.resize(k >> 1), t1 = (t1 * ret).modxn(k >> 1), t1.resize(k);
for (int i = (k >> 1); i < k; ++i)
t1.a[i] = t1[i - (k >> 1)];
for (int i = 0; i < (k >> 1); ++i)
t1.a[i] = 0;
ret -= t1;
}
return ret.modxn(m);
}
inline poly sqrt(int m) const {
poly ret(1), f, g;
for (int k = 1; k < m;) {
k <<= 1;
f = ret, f.resize(k >> 1);
f.ntt();
for (int i = 0; i < (k >> 1); ++i)
f.a[i] = (ll)f[i] * f[i] % mod;
f.ntt(-1);
for (int i = 0; i < k; ++i)
sub(f.a[i % (k >> 1)], operator[](i));
g = (2 * ret).inver(k >> 1), f = (f * g).modxn(k >> 1), f.resize(k);
for (int i = (k >> 1); i < k; ++i)
f.a[i] = f[i - (k >> 1)];
for (int i = 0; i < (k >> 1); ++i)
f.a[i] = 0;
ret -= f;
}
return ret.modxn(m);
}
inline poly pow(int m, int k1, int k2 = -1) const {
if (empty())
return poly();
if (k2 == -1)
k2 = k1;
int t = 0;
for (; t < size() && !a[t]; ++t);
if ((ll)t * k1 >= m)
return poly();
poly ret;
ret.resize(m);
int u = qpow(a[t], mod - 2), v = qpow(a[t], k2);
for (int i = 0; i < m - t * k1; ++i)
ret.a[i] = (ll)operator[](i + t) * u % mod;
ret = ret.log(m - t * k1);
for (int i = 0; i < ret.size(); ++i)
ret.a[i] = (ll)ret[i] * k1 % mod;
ret = ret.exp(m - t * k1), t *= k1, ret.resize(m);
for (int i = m - 1; i >= t; --i)
ret.a[i] = (ll)ret[i - t] * v % mod;
for (int i = 0; i < t; ++i)
ret.a[i] = 0;
return ret;
}
};
}
using Poly::fac;
using Poly::ifac;
using Poly::inv;
using Poly::init;
using Poly::poly;
inline int binom(int n, int m) {
return n < m || m < 0 ? 0 : (ll)fac[n] * ifac[m] % mod * ifac[n - m] % mod;
}
inline poly czt(const poly &f, int c, int m) {
int n = f.size(), ci = qpow(c, mod - 2);
poly a, b, ret;
a.resize(n), b.resize(n + m - 1), ret.resize(m);
vector<int> cpow(n + m - 1), cipow(max(n, m));
cpow[0] = 1;
for (int i = 1, pw = 1; i < cpow.size(); ++i)
cpow[i] = (ll)cpow[i - 1] * pw % mod,
pw = (ll)pw * c % mod;
cipow[0] = 1;
for (int i = 1, pw = 1; i < cipow.size(); ++i)
cipow[i] = (ll)cipow[i - 1] * pw % mod,
pw = (ll)pw * ci % mod;
for (int i = 0; i < n; ++i)
a.a[i] = (ll)f[i] * cipow[i] % mod;
for (int i = 0; i < n + m - 1; ++i)
b.a[n + m - 2 - i] = cpow[i];
a *= b;
for (int i = 0; i < m; ++i)
ret.a[i] = (ll)cipow[i] * a[n + m - 2 - i] % mod;
return ret;
}
namespace QAnalog {
const int q = 2;
int qPow[N + 5];
int n[N + 5], fac[N + 5], ifac[N + 5];
inline void init() {
qPow[0] = 1;
for (int i = 1; i <= N; ++i)
qPow[i] = (ll)qPow[i - 1] * q % mod;
int qi = qpow(reduce(1 - q), mod - 2);
fac[0] = 1;
for (int i = 1; i <= N; ++i)
n[i] = (ll)(1 - qPow[i] + mod) * qi % mod,
fac[i] = (ll)fac[i - 1] * n[i] % mod;
ifac[N] = qpow(fac[N], mod - 2);
for (int i = N; i; --i)
ifac[i - 1] = (ll)ifac[i] * n[i] % mod;
}
inline int binom(int n, int m) {
return n < m || m < 0 ? 0 : (ll)fac[n] * ifac[m] % mod * ifac[n - m] % mod;
}
}
int n, H, L[N + 5], W[N + 5], R, lim;
int r[N + 5], coe = 1;
int f[N + 5], g[N + 5], ans;
namespace TellegensPrinciple {
poly seg[N * 4 + 5];
int ans[N + 5];
inline poly mulT(poly a, poly b, int k = -1) {
if (a.empty() || b.empty())
return poly();
int n = a.size(), m = b.size();
if (k == -1)
k = n - m + 1;
if (k <= 0)
return poly();
if (k < 40 || b.size() < 40) {
poly ret;
ret.resize(k);
for (int i = 0;i < k;++i)
for (int j = 0;j < b.size();++j)
fam(ret.a[i], a[i + j], b[j]);
return ret;
}
reverse(b.a.begin(), b.a.end());
if (k == n - m + 1) {
int lim = 1;
for (; lim < n; lim <<= 1);
a.resize(lim), b.resize(lim);
a.ntt(), b.ntt();
for (int i = 0; i < lim; ++i)
a.a[i] = (ll)a[i] * b[i] % mod;
a.ntt(-1);
for (int i = 0; i < k; ++i)
a.a[i] = a[m - 1 + i];
for (int i = k; i < lim; ++i)
a.a[i] = 0;
a.resize(n - m + 1);
} else {
a *= b, a.resize(n + m - 1);
for (int i = 0; i < k; ++i)
a.a[i] = a[m - 1 + i];
for (int i = k; i < n + m - 1; ++i)
a.a[i] = 0;
a.resize(k);
}
return a;
}
void build(int p, int l, int r) {
if (l == r) {
seg[p] = poly({(ll)neg(l - 1) * inv[l] % mod, inv[l]});
return ;
}
int mid = l + r >> 1;
build(ls, l, mid), build(rs, mid + 1, r);
seg[p] = seg[ls] * seg[rs];
}
void solve(int p, int l, int r, poly f) {
if (l == r) {
for (int i = 0; i < f.size(); ++i)
fam(ans[l], seg[p][i], f[i]);
ans[l] = (ll)ans[l] * fac[l] % mod;
return ;
}
int mid = l + r >> 1;
solve(ls, l, mid, f.modxn(mid - l + 2)), solve(rs, mid + 1, r, mulT(f, seg[ls]));
}
void solve(poly f) {
int n = f.size() - 1;
build(1, 1, n), solve(1, 1, n, f);
}
}
int main() {
init(), QAnalog::init();
scanf("%d%d", &n, &H);
for (int i = 1; i <= H; ++i)
scanf("%d", r + i), R = max(R, r[i]),
coe = (ll)coe * qpow(2, (ll)r[i] * (r[i] - 1) / 2 % (mod - 1)) % mod * QAnalog::fac[r[i]] % mod;
f[R] = 1;
for (int i = 1; i <= H; ++i)
f[R] = (ll)f[R] * QAnalog::binom(R, r[i]) % mod;
for (int i = 1; i <= n; ++i)
scanf("%d%d", L + i, W + i), lim = max({lim, L[i], W[i]});
poly temp;
temp.resize(R + 1);
for (int i = 1; i <= H; ++i)
add(temp.a[r[i]], 1);
temp = czt(temp, inv[2], H + 1), temp.a[0] = 0;
for (int i = 1; i <= H; ++i)
temp.a[i] = (ll)(mod - inv[i]) * temp[i] % mod;
temp = temp.exp(H + 1);
temp = czt(temp, 2, lim + 1);
for (int i = R + 1; i <= lim; ++i)
f[i] = (ll)f[i - 1] * qpow(reduce(1 - QAnalog::qPow[i]), H) % mod * qpow(temp[i], mod - 2) % mod;
TellegensPrinciple::solve(poly(vector<int>(f, f + lim + 1)));
copy(TellegensPrinciple::ans + 1, TellegensPrinciple::ans + lim + 1, g + 1);
for (int i = 1; i <= n; ++i) {
ans = (ll)coe * g[L[i]] % mod * g[W[i]] % mod;
printf("%d\n", ans);
}
}